Refinements of Gál’s Theorem and Applications

نویسنده

  • MARK LEWKO
چکیده

We give a simple proof of a well-known theorem of Gál and of the recent related results of Aistleitner, Berkes and Seip [1] regarding the size of GCD sums. In fact, our method obtains the asymptotically sharp constant in Gál’s theorem, which is new. Our approach also gives a transparent explanation of the relationship between the maximal size of the Riemann zeta function on vertical lines and bounds on GCD sums; a point which was previously unclear. Furthermore we obtain sharp bounds on the spectral norm of GCD matrices which settles a question raised in [2]. We use bounds for the spectral norm to show that series formed out of dilates of periodic functions of bounded variation converge almost everywhere if the coefficients of the series are in L(log log 1/L) , with γ > 2. This was previously known with γ > 4, and is known to fail for γ < 2. We also develop a sharp Carleson-Hunt-type theorem for functions of bounded variations which settles another question raised in [1]. Finally we obtain almost sure bounds for partial sums of dilates of periodic functions of bounded variations improving [1]. This implies almost sure bounds for the discrepancy of {nkx} with nk an arbitrary growing sequences of integers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fan-KKM Theorem in Minimal Vector Spaces and its Applications

In this paper, after reviewing some results in minimal space, some new results in this setting are given. We prove a generalized form of the Fan-KKM typetheorem in minimal vector spaces. As some applications, the open type of matching theorem and generalized form of the classical KKM theorem in minimal vector spaces are given.

متن کامل

Simultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications

In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.

متن کامل

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...

متن کامل

Bernstein's polynomials for convex functions and related results

In this paper we establish several polynomials similar to Bernstein's polynomials and several refinements of  Hermite-Hadamard inequality for convex functions.

متن کامل

A note on the Young type inequalities

In this   paper,  we   present  some  refinements  of the   famous Young  type  inequality.   As  application  of   our   result, we  obtain  some  matrix inequalities   for   the  Hilbert-Schmidt norm  and   the  trace   norm. The results    obtained   in  this  paper  can  be   viewed   as  refinement  of  the   derived  results   by  H.  Kai  [Young  type  inequalities  for matrices,  J.  Ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014